Deck Machinery for Research Vessels: Lessons Learned

TARAJOQ



RV Tenders

Fishing winch package

Fishing winch package

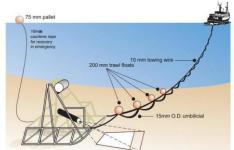
- Trawl Winches
- Net Sounder Winch
- Net Drum
- Sweepline Winches
- Gilson Winches
- Auxiliary Winches
- Cod End Winch


Fishing winch package

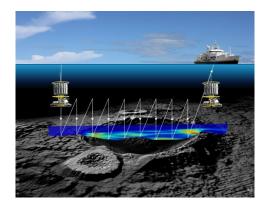
Common tender issues

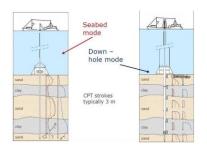
- General power and speed requirements usually overestimated. Unlike big trawlers, RVs do not need huge catch capacity, so generally the pulls can be kept fairly low.
- RVs multipurpose vessels, incorporating as many technologies and functions as possible, which leads to weight and space limitations.
- Fishing winches designed to be robust and long-lasting, which means bigger and heavier.

- Water sampling winches
- Geological
- Hydrographic
- ROV
- Seismic
- Oceanographic
- Geophysical
- Drop Keel Winches

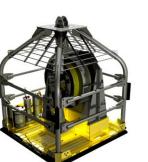


- Three existing types of scientific winches depending on the operation:
 - 1. Towing Winches

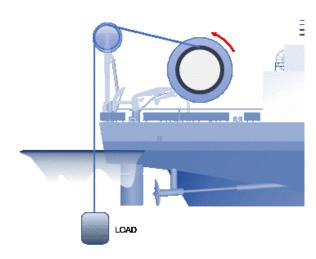


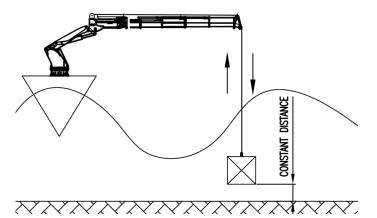

Scientific winch package

2.1 Vertical profiling winches: water sampler



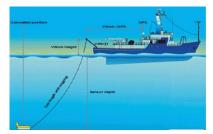
2.2 Vertical profiling winches: seabed





Scientific winch package

3.1 AHC Vertical profiling



3.2 AHC Towing

Scientific winch package

Common tender issues

- General pull requirements often incorrectly estimated, whilst speed requirements usually overestimated.
- Sliprings: number of conducts and fiber optics are often overestimated. Define if fiber optic is multimode or monomode.
- Cable requirement information vital to dimension winch and motors.
- Scientific instrument information is other main priority for supplier to dimension winch.
- Correctly dimensioned performance requirements can reduce size and weight.
 Reduced motor sizes assist this, as well as potential price reduction.

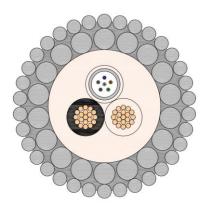
Technical requirements

Scientific winch package

Scientific winches: Deep sea analysis

Winch manufacturer requirements:

- Wire length


Wire (Not included)

Steel Wire Rotation Resistant 35WxK7 1960 N/mm² .

Steel Wire diameter	10 mm	Steel Wire length	6.000 m
Steel Wire breaking load	88,3 <mark>k</mark> N	Steel Wire weight unit	50,4 kg/100m
Steel Wire weight	3.024 kg	Steel Wire weight in seawater	2.639 kg

- Wire datasheet

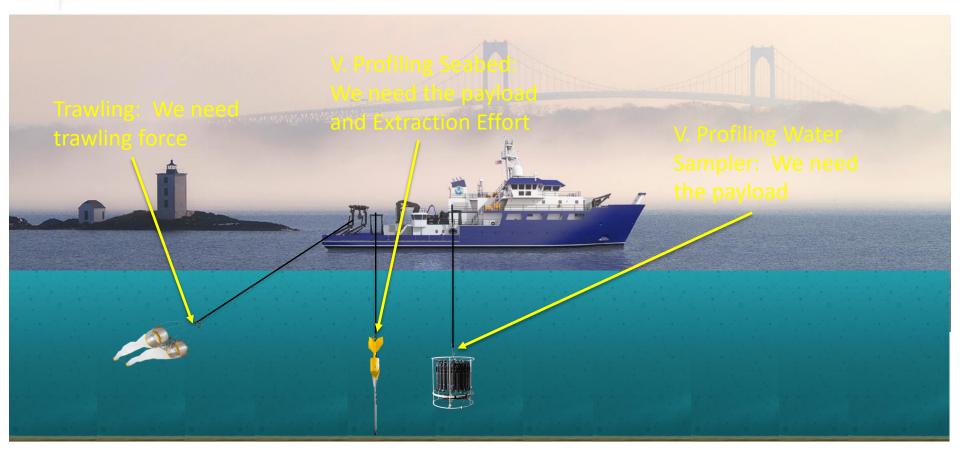
Description	Controlled Customer Cop	by Part No.	Revision	Issue
Inspection Cable	Rochester Cable	A309113	С	1
CABLE CHARACTERISTICS NOMINAL VALUES @ 20°C	Imp	erial/US	SI	
PHYSICAL				
Weight in Air	444	lb/kft	661 kg/km	
Weight in Seawater	358	lb/kft	533 kg/km	
Specific Gravity	5.1		5.1	
MECHANICAL				
Breaking Strength	23,5	00 lbf	104 kN	
Working Load	5,80	0 lbf	26 kN	
Recommended Bend Radius ¹	11 ir	n	27 cm	
ELECTRICAL				
Voltage Rating				
Element A	1,20	0 V	1,200 V	
dc Resistance				
Element A	3.0 \$	Ω/kft	9.9 Ω/km	
Insulation Resistance				
Element A	20.0	00 MΩ•kft	6.000 MΩ•km	

Scientific winch package

Scientific winches: Deep sea analysis

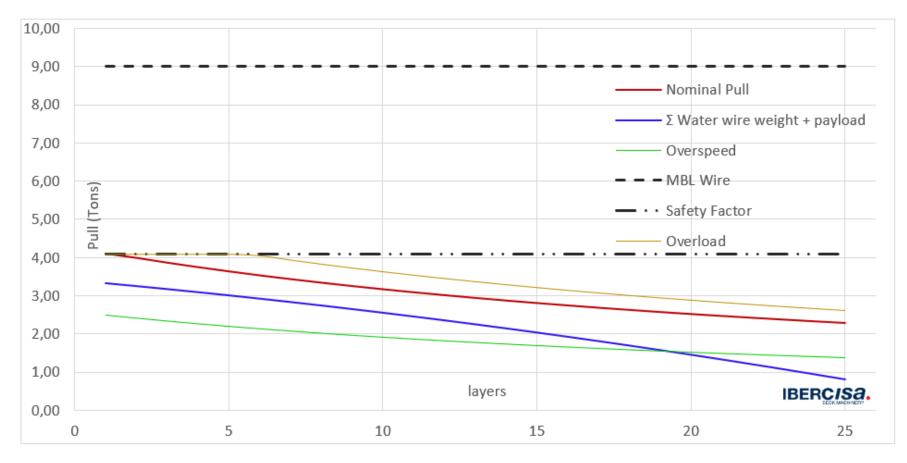
- Speed at first layer or full wire deployment time

- Payload


*Note: The Payload is the maximum lifting mass that the winch is able to lift in nominal conditions excluding wire weight (in water). The scientific element should not exceed this value:

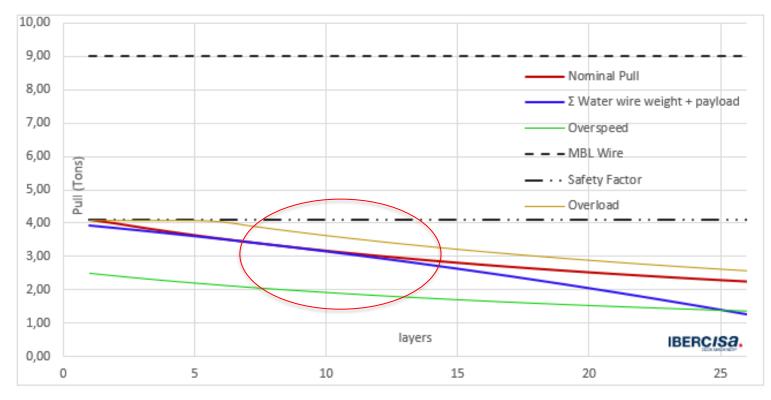
Payload 680 kg Multi Corer OSIL MIDI

Safety Factor (Last layer)	3,9
Safety Factor (1st layer)	2,2



Scientific winch package

Scientific winches: Deep sea analysis



Scientific winch package

Scientific winches: Deep sea analysis

Example of a typical problem in deep sea analysis with incorrect dimensioning.

Scientific winch package

Scientific winches: Deep sea analysis

Supplier's responsibility to define the necessary

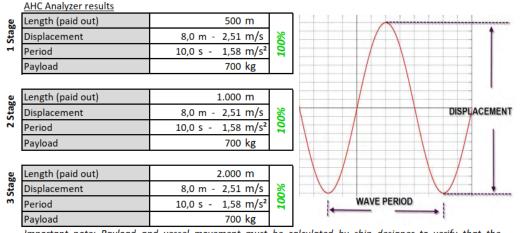
- Pull at all layers
- Drum dimensions

Scientific winch package

Scientific winches: Deep Sea AHC Winches

Winch manufacturer requirements:

- Wire length
- Wire datasheet
- Payload


For AHC operations, it is highly recommended that the SUPPLIER defines the speed according to AHC requirements

Scientific winch package

Scientific winches: Deep Sea AHC Winches

- Wave Period m/s² on the block sheave.
- Wave Amplitude m/s on the block sheave.

<u>Important note: Payload and vessel movement must be calculated by ship designer to verify that the</u> <u>acceleration and speed at the working position sheave does not exceed these values. If this is the case, the</u> <u>power requirement of the winch would have to be recalculated and corrected.</u>

IMPORTANT Eurofleets to define standardised wave amplitude/period values.

Most commonly used values: 4m (1.57 m/min) displacement @ 8 seconds (1.23 m/s²)

Scientific winch package

Scientific winches: Deep Sea AHC Winches

Supplier's responsibility to define the necessary

- Pull at all layers
- Speed at all layers
- Drum dimensions

Launch And Recovery System

DECK MACHINERY

Design and manufacture

Launch And Recovery System

- Frames (A, J, T, L)
- Telescopic Booms
- Piston Corer Deployment
- ROV LARS

Launch And Recovery System

Common tender issues

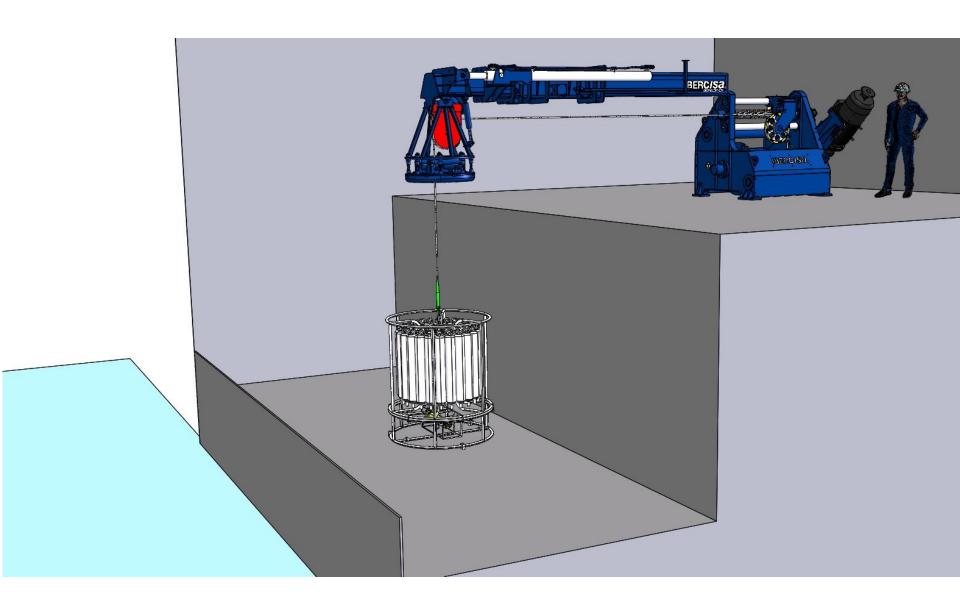
- SWL and deployment time requirements usually overestimated
- Electro-hydraulic power unit specifications usually overestimated due to unecessary simultaneity requirements
- Information on various scientific instrument is other main priority for supplier to dimension the frames
- Which winch works with each frame is often unclear

LARS Technical requirements

Launch And Recovery System

Frame definition

- Type of frame
- Define Classification Society


If DNVGL-ST-377 is the case:

- 1. Select wire. With this wire, the frame must be designed for wire MBL at top-out position. Wire will break before frame
- 2. Define the Dynamic SWL with payload @ sea state

If not DNVGL, follow SWL:

- 1. Define the Static SWL @ sea state
- 2. Define the Dynamic SWL with payload @ sea state

Douglas Scale			
Sea State	Hsig (m)		
SS1low	0		
SS1high	0,1		
SS2low	0,1		
SS2high	0,5		
SS3low	0,5		
SS3high	1,25		
SS4low	1,25		
SS4high	2,5		
SS5low	2,5		
SS5high	4		
SS6low	4		
SS6high	6		

Control and automation

- AHC
- Autotrawl
- Hangar mode
- Local & remote control
- Data logging and cloud transfer
- Energy regeneration & treatment
- Remote connectivity and support

Project realisation

Project realisation

Future project

- Collaboration is key
- The winch package cannot be 'off-the-shelf'
- Owner / operators must share all information on instruments, cables, and manner of operation as early as possible

Project realisation

Proposal for future projects

- Eurofleets to create library of scientific instruments

Eurofleets to define standardised wave amplitude/period values

 Owner / operator new ideas to be shared on platform on Eurofleets

After sale and through-life-care

After sale and through-life-care

- Process doesn't end at sale
- Owner/operator and supplier must maintain contact
- Sea trials to include specific oceanographic trials and training (5 days)
- After sale service and maintenance

